Publications
papers
Deep Learning Based Event Reconstruction for Cyclotron Radiation Emission Spectroscopy
Project 8 Collaboration (A. Ashtari Esfahani et al.)
arXiv: 2402.13256 [physics.ins-det]
Cyclotron radiation emission spectroscopy of electrons from tritium beta decay and Kr-83m internal conversion
Project 8 Collaboration (A. Ashtari Esfahani et al.)
arXiv: 2303.12055 [nucl-ex]
DOI: 10.1103/PhysRevC.109.035503
Phys. Rev. C 109, 035503
Tritium Beta Spectrum and Neutrino Mass Limit from Cyclotron Radiation Emission Spectroscopy
Project 8 Collaboration (A. Ashtari Esfahani et al.)
arXiv: 2212.05048 [nucl-ex]
DOI: 10.1103/PhysRevLett.131.102502
Phys. Rev. Lett. 131, 102502
SYNCA: A Synthetic Cyclotron Antenna for the Project 8 Collaboration
Project 8 Collaboration (A. Ashtari Esfahani et al.)
arXiv: 2212.08026 [physics.ins-det]
DOI: 10.1088/1748-0221/18/01/P01034
JINST 18 P01034
Viterbi Decoding of Signals in Project 8
Project 8 Collaboration (A. Ashtari Esfahani et al.)
arXiv: 2112.05265 [physics.ins-det]
DOI: 10.1088/1367-2630/ac66f6
New J. Phys. 24 053013
The Project 8 Neutrino Mass Experiment
Project 8 Collaboration (A. Ashtari Esfahani et al.)
arXiv: 2203.07349 [nucl-ex]
Bayesian Analysis of a Future Beta Decay Experiment's Sensitivity to Neutrino Mass Scale and Ordering
Project 8 Collaboration (A. Ashtari Esfahani et al.)
arXiv: 2012.14341 [physics.data-an]
DOI: 10.1103/PhysRevC.103.065501
Phys. Rev. C 103, No.6. (2021)
Cyclotron Radiation Emission Spectroscopy Signal Classification with Machine Learning in Project 8
Project 8 Collaboration (A. Ashtari Esfahani et al.)
arXiv: 1909.08115 [nucl-ex]
DOI: 10.1088/1367-2630/ab71bd
New J.Phys. 22 (2020) 3, 033004
Locust: C++ Software for Simulation of RF Detection
Project 8 Collaboration (A. Ashtari Esfahani et al.)
arXiv: 1907.11124 [physics.comp-ph]
DOI: 0.1088/1367-2630/ab550d
New J.Phys. 21 (2019) 113051
Electron Radiated Power in Cyclotron Radiation Emission Spectroscopy Experiments
Project 8 Collaboration (A. Ashtari Esfahani, et al.)
arXiv: 1901.02844 [physics.ins-det]
DOI: 10.1103/PhysRevC.99.055501
Phys.Rev. C99 (2019) no.5, 055501
Determining the neutrino mass with Cyclotron Radiation Emission Spectroscopy - Project 8
Project 8 Collaboration (A. Ashtari Esfahani et al.)
arXiv: 1703.02037 [nucl-ex]
DOI: 10.1088/1361-6471/aa5b4f
J. Phys. G 44 (2017) 054004
Single electron detection and spectroscopy via relativistic cyclotron radiation
Project 8 Collaboration (D.M. Asner et al.)
arXiv: 1408.5362 [nucl-ex]
DOI: 10.1103/PhysRevLett.114.162501
Phys. Rev. Lett. 114 (2015) 162501
Sensitivity of Neutrino Mass Experiments to the Cosmic Neutrino Background
A. Kaboth, J.A. Formaggio, B. Monreal
arXiv: 1006.1886 [hep-ex]
DOI: 10.1103/PhysRevD.82.062001
Phys. Rev. D 82 (2010) 062001
Relativistic Cyclotron Radiation Detection of Tritium Decay Electrons as a New Technique for Measuring the Neutrino Mass
Benjamin Monreal, Joseph A. Formaggio
arXiv: 0904.2860 [nucl-ex]
DOI: 10.1103/PhysRevD.80.051301
Phys. Rev. D 80 (2009) 051301
Graduate Theses
Development of Scalable Approaches to Neutrino Mass Measurement with the Project 8 Experiment
Andrew Ziegler
Pennsylvania State University (2023)
Novel Signal Reconstruction Techniques in Cyclotron Radiation Emission Spectroscopy for Neutrino Mass Measurement
Luis E. Saldana
Yale University (2021)
Statistical Signal Processing and Detector Optimization in Project 8
Nicholas Buzinsky
Massachusetts Institute of Technology (2021)
Event detection in Project 8 : Detection efficiency and its implications for the first tritium β-decay spectrum recorded with Cyclotron Radiation Emission Spectroscopy
Christine Claessens
Johannes Gutenberg-Universität Mainz (2020)
Constraining the neutrino mass using cyclotron radiation emission spectroscopy
Ali Ashtari Esfahani
University of Washington (2020)
New analysis developments for reconstruction and classification of CRES signals in Project 8
Evan M. Zayas
Massachusetts Institute of Technology (2019)
Cyclotron Radiation Emission Spectroscopy: First demonstration and performance benchmarks from the Project 8 experiment
Benjamin H. LaRoque
University of California, Santa Barbara (2017)
A novel method for electron energy measurement: Cyclotron Radiation Emission Spectroscopy
Jared Kofron
University of Washington (2015)
Techniques for Direct Neutrino Mass Measurement Utilizing Tritium Beta-Decay
Daniel L. Furse
Massachusetts Institute of Technology (2015)
Conference proceedings
Building an atomic source for the Project 8 experiment
Larisa Thorne
DOI: 10.22323/1.441.0231
XVIII International Conference on Topics in Astroparticle and Underground Physics (TAUP 2023)
Going big for Phase III of the Project 8 neutrino mass experiment
Juliana Stachurska
DOI: 10.22323/1.441.0229
XVIII International Conference on Topics in Astroparticle and Underground Physics (TAUP 2023)
Distributed Computing for the Project 8 Experiment
M. Schram, M. Thomas, K. Fox, B. LaRoque, B. VanDevender, N. S. Oblath and D. Cowley
DOI: 10.1051/epjconf/202024503030
EPJ Web of Conferences 245, 03030 (2020)
24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019)
Zero-Deadtime Processing in Beta Spectroscopy for Measurement of the non-Zero Neutrino Mass
B. LaRoque
DOI: 10.1051/epjconf/202024507029
EPJ Web of Conferences 245, 07029 (2020)
24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019)
High-Availability On-Site Deployment to Heterogeneous Architectures for Project 8 and ADMX
B. LaRoque
DOI: 10.1051/epjconf/202024501014
EPJ Web of Conferences 245, 01014 (2020)
24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019)
Project 8: Measuring the tritium beta-decay spectrum using Cyclotron Radiation Emission Spectroscopy
N. S. Oblath
DOI: 10.1088/1742-6596/1468/1/012178
16th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2019)
J. Phys. Conf. Ser. 1468 (2020) 1, 012178
A Ioffe Trap Magnet for the Project 8 Atom Trapping Demonstrator
A. L. Radovinsky, A. Lindman, J. A. Formaggio and J. V. Minervini
DOI: 10.1109/TASC.2020.2985675
MT26 International Conference on Magnet Technology
IEEE Transactions on Applied Superconductivity, vol. 30, no. 4, June 2020, Art. no. 4101905
A Multi-Cubic Meter Ioffe Trap for Project 8
A. Lindman
DOI: 10.1109/TASC.2020.2985675
MT26 International Conference on Magnet Technology
IEEE Transactions on Applied Superconductivity, vol. 30, no. 4, June 2020, Art. no. 4101905
Status of the Project 8 Phase II
M. Guigue
DOI: 10.1088/1742-6596/1342/1/012025
arXiv: 1710.01827 [physics.ins-det]
15th International Conference on Topics in Astroparticle and Underground Physics, July 2017
J. Phys. Conf. Ser. 1342 (2020) 1, 012025
Overview of Project 8 and Progress Towards Tritium Operation
W. Pettus
DOI: 10.1088/1742-6596/1342/1/012040
arXiv: 1710.01826 [physics.ins-det]
15th International Conference on Topics in Astroparticle and Underground Physics, July 2017
J. Phys. Conf. Ser. 1342 012040
Project 8: Towards a Direct Measurement of the Neutrino Mass with Tritium Beta Decays
N. S. Oblath
DOI: 10.22323/1.307.0026
17th International Workshop on Neutrino Telescopes (NeuTel) March, 2017
PoS NEUTEL2017 (2018) 026
Project 8 Phase III Design Concept
M. Guigue
DOI: 10.1088/1742-6596/888/1/012230
arXiv: 1703.05759 [physics.ins-det]
Neutrino 2016
J. Phys.: Conf. Ser. 888 012230
Results from the Project 8 phase-1 cyclotron radiation emission spectroscopy detector
B. LaRoque
arXiv: 1703.05760 [physics.ins-det]
Neutrino 2016
J. Phys.: Conf. Ser. 888 012074
Direct neutrino mass measurement in the Project8 experiment
B. A. VanDevender
DOI: 10.22323/1.274.0018
XIII International Conference on Heavy Quarks and Leptons (HQL 2016)
PoS HQL2016 (2017) 018
(Only proceedings from the last five years are shown here)